Watching Na atoms solvate into (Na+,e-) contact pairs: untangling the ultrafast charge-transfer-to-solvent dynamics of Na- in tetrahydrofuran (THF).
نویسندگان
چکیده
With the large dye molecules employed in typical studies of solvation dynamics, it is often difficult to separate the intramolecular relaxation of the dye from the relaxation associated with dynamic solvation. One way to avoid this difficulty is to study solvation dynamics using an atom as the solvation probe; because atoms have only electronic degrees of freedom, all of the observed spectroscopic dynamics must result from motions of the solvent. In this paper, we use ultrafast transient absorption spectroscopy to investigate the solvation dynamics of newly created sodium atoms that are formed following the charge transfer to solvent (CTTS) ejection of an electron from sodium anions (sodide) in liquid tetrahydrofuran (THF). Because the absorption spectra of the sodide reactant, the sodium atom, and the solvated electron products overlap, we first examined the dynamics of the ejected CTTS electron in the infrared to build a detailed model of the CTTS process that allowed us to subtract the spectroscopic contributions of the sodide bleach and the solvated electron and cleanly reveal the spectroscopy of the solvated atom. We find that the neutral sodium species created following CTTS excitation of sodide initially absorbs near 590 nm, the position of the gas-phase sodium D-line, suggesting that it only weakly interacts with the surrounding solvent. We then see a fast solvation process that causes a red-shift of the sodium atom's spectrum in approximately 230 fs, a time scale that matches well with the results of MD simulations of solvation dynamics in liquid THF. After the fast solvation is complete, the neutral sodium atoms undergo a chemical reaction that takes place in approximately 740 fs, as indicated by the observation of an isosbestic point and the creation of a species with a new spectrum. The spectrum of the species created after the reaction then red-shifts on a approximately 10-ps time scale to become the equilibrium spectrum of the THF-solvated sodium atom, which is known from radiation chemistry experiments to absorb near approximately 900 nm. There has been considerable debate as to whether this 900-nm absorbing species is better thought of as a solvated atom or a sodium cation:solvated electron contact pair, (Na+,e-). The fact that we observe the initially created neutral Na atom undergoing a chemical reaction to ultimately become the 900-nm absorbing species suggests that it is better assigned as (Na+,e-). The approximately 10-ps solvation time we observe for this species is an order of magnitude slower than any other solvation process previously observed in liquid THF, suggesting that this species interacts differently with the solvent than the large molecules that are typically used as solvation probes. Together, all of the results allow us to build the most detailed picture to date of the CTTS process of Na- in THF as well as to directly observe the solvation dynamics associated with single sodium atoms in solution.
منابع مشابه
Mapping out the conduction band under CTTS transitions: the photodetachment quantum yield of sodide (Na ) in tetrahydrofuran
Upon photoexcitation of the charge-transfer-to-solvent absorption band of Na in tetrahydrofuran (THF), electrons detach into immediate contact pairs, solvent-separated contact pairs, or as free electrons. In this Letter, we analyze the recombination dynamics of Na at multiple excitation wavelengths to determine the action spectrum for production of each type of electron. The action spectra matc...
متن کاملThe ultrafast charge-transfer-to-solvent dynamics of iodide in tetrahydrofuran. 1. Exploring the roles of solvent and solute electronic structure in condensed-phase charge-transfer reactions.
Although they represent the simplest possible charge-transfer reactions, the charge-transfer-to-solvent (CTTS) dynamics of atomic anions exhibit considerable complexity. For example, the CTTS dynamics of iodide in water are very different from those of sodide (Na-) in tetrahydrofuran (THF), leading to the question of the relative importance of the solvent and solute electronic structures in con...
متن کاملSimulating the formation of sodium:electron tight-contact pairs: watching the solvation of atoms in liquids one molecule at a time.
The motions of solvent molecules during a chemical transformation often dictate both the dynamics and the outcome of solution-phase reactions. However, a microscopic picture of solvation dynamics is often obscured by the concerted motions of numerous solvent molecules that make up a condensed-phase environment. In this study, we use mixed quantum/classical molecular dynamics simulations to furn...
متن کاملOptical control of electrons during electron transfer.
The dynamics of electron transfer reactions in solution can be controlled with the use of a sequence of femtosecond laser pulses. In the charge transfer to solvent (CTTS) reaction of sodide (Na-) in tetrahydrofuran, an initial light pulse launched the CTTS reaction, ejecting an electron into either an immediate or a solvent-separated Na0:solvated electron contact pair. A second pulse was used t...
متن کاملUltrafast charge-transfer-to-solvent dynamics of iodide in tetrahydrofuran. 2. Photoinduced electron transfer to counterions in solution.
The excited states of atomic anions in liquids are bound only by the polarization of the surrounding solvent. Thus, the electron-detachment process following excitation to one of these solvent-bound states, known as charge-transfer-to-solvent (CTTS) states, provides a useful probe of solvent structure and dynamics. These transitions and subsequent relaxation dynamics also are influenced by othe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. A
دوره 111 24 شماره
صفحات -
تاریخ انتشار 2007